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New exact solutions of the Navier-Stokes equations are obtained for the unbounded 
and bounded oscillatory and impulsive tangential edgewise motion of touching half- 
infinite plates in their own plane. In contrast to Stokes classical solutions for the 
harmonic and impulsive motion of an infinite plane wall, where the solutions are 
separable or have a simple similarity form, the present solutions have a two- 
dimensional structure in the near region of the contact between the half-infinite plates. 
Nevertheless, it is possible to obtain relatively simple closed-form solutions for the flow 
field in each case by defining new variables which greatly simplify the r- and 8- 
dependence of the solutions in the vicinity of the contact region. These solutions for 
flow in a half-infinite space are then extended to bounded flows in a channel using an 
image superposition technique. The impulsive motion has application to the motion 
near geophysical faults, whereas the oscillatory motion has arisen in the design of a 
novel oscillating half-plate flow chamber for examining the effect of fluid shear stress 
on cultured cell monolayers. 

1. Introduction 
Every student of fluid mechanics is familiar with Stokes’ celebrated paper on 

pendulums (1851) in which he describes the now classical problems of the oscillatory 
and impulsive motion of an infinite plate in its own plane, also known as Stokes 
problems of the first and second kind. The first problem leads to the planar 
propagation of a vorticity wave with velocity c = ( 2 ~ 0 ) ~ ’ ~  and a penetration depth 
6 = ( 2 ~ / w ) l / ~ ,  whereas the second has a similarity solution in which the shear stress at 
the plate decays as l / t l i2  and 6 = 2(vt)liz. An interesting variation of Stokes first 
problem has arisen in the design of a novel flow apparatus in which cell tissue 
monolayers could be subject to spatially non-uniform oscillatory shear. The basic flow 
geometry is depicted in figure 1 (b) where a confluent cell tissue monolayer is grown on 
the top boundary, y = h, of a flow channel, whereas the lower boundary, y = 0, is a 
split plate whose right-hand half, x > 0, undergoes an impulsive motion or a harmonic 
oscillation in the z-direction, while its left-hand half remains stationary. This confined 
parallel channel geometry is the bounded extension of the fundamental problem shown 
in figure 1 (a), the edgewise tangential motion of two touching half-infinite plates in the 
z-direction. The latter is a variation of Stokes first and second problems in which only 
one half of the plane is moving. The sideways impulsive motion of a half plate is a 
simple model for the tangential flow parallel to a sudden shearing crack in a surface. 
Such flows have geophysical applications in earthquakes, fracture of ice sheets and 
related problems. New exact solutions of the Navier-Stokes equation for the flow in 
a half space or in a channel under the impulsive and oscillatory driving motions 
sketched in figures 1 (a) and 1 (b) are presented in this study. 
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FIGURE 1. The sketches of the flow geometry showing (a) flow in a half-plane 
and (b) flow in a channel. 

The flow problems in figure 1 are uni-directional flows with a single velocity 
component in the z-direction that depends on time and the two spatial coordinates in 
the cross-section of the flow. For these uni-directional flows the nonlinear inertial terms 
in the Navier-Stokes equations vanish identically and the principal difficulty is the 
discontinuity in velocity and the singularity in shear stress at (0,O). We shall show, 
however, that critical functional simplifications exist in each case and it is possible to 
obtain closed-form analytic solutions for touching half-infinite plates for both 
impulsive and harmonic motions. These fundamental solutions are then used to find 
the solutions for the channel flows in figure 1 (b). The latter solutions can be obtained 
by superposing an infinite series solution derived from a reflection procedure which 
ensures that the no-slip boundary condition is satisfied on the top wall. Owing to the 
exponential decay of the fundamental solutions as y increases, the convergence of this 
superposition is exponentially fast. 

The motivation for this study derives from a recent paper by the authors, 
Weinbaum, Cowin & Zeng (1994), in which a new hypothesis is advanced for the 
cellular level transduction mechanism by which cells in the mineralized portion of 
bone, osteocytes, sense mechanical strains due to loading and communicate this 
loading to the bone forming cells, osteoblasts, at the bone surface. The new hypothesis 
suggests that the osteocytes, which reside in the fluid filled lacuna+analicular channels 
in the bone are biochemically stimulated by mechanically induced fluid shear stresses 
acting on the membranes of their osteocytic processes. The feasibility of this hypothesis 
can be tested in cell culture studies in which flow channels are constructed where 
cultured cell monolayers are subjected to fluid shear stresses in the anticipated 
physiological range. Extensive studies of this nature have been performed on vascular 
endothelial monolayers to probe a wide variety of biochemical responses to shear stress 
since the pioneering study by Dewey et al. (1981) first demonstrated the viability of the 
cells in the shear flow apparatus. In bone, experiments indicate that frequency as well 
as the magnitude of the mechanical load are important and that the characteristic 
distance between the surface cells and the most interior osteocytes over which the shear 
stress varies is typically five cells or approximately 200 pm. The flow apparatus shown 
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in figure 1 (b) provides a device wherein the height h can be adjusted to simulate this 
characteristic distance for cellular shear stress variation and also to reproduce the 
frequency of physiological loading. 

This paper is presented in five sections. Section 2 describes the exact fundamental 
solutions for the flow in a half-space driven by the tangential edgewise motion of the 
half-infinite plate shown in figure 1 (a). The exact solutions for the flow driven by the 
tangential edgewise motion of the split lower plate in the channel shown in figure 1 (b)  
are presented in 93. The results and the discussion of the new solutions are presented 
in $4 and a brief conclusion is given in 95. 

2. Flow driven by an unbounded half-infinite plate 
In this section we consider flow in half-infinite space driven impulsively or 

periodically by the tangential edgewise motion of touching half-infinite plates in the z- 
direction as sketched in figure l(a). We assume that the only velocity component is 
parallel to the edge of the plates and thus the x- and y-components of the velocity 
vanish as in a spatially and temporally varying uni-directional flow in the z-direction. 
To satisfy continuity velocity component w is independent of z and a function of t ,  x 
and y .  The governing Navier-Stokes equation for this uni-directional flow is 

aw 
- = V V W ,  
at 

where v is the viscosity of the fluid and V2 = ( ~ z / ~ x z ) + ( ~ z / ~ y y " ) .  
The boundary and initial conditions for the impulsive motion are : 

w = O  a t y = O ,  x<O,  t > O  ( 2  a)  

w = l  a t y = O ,  x > O ,  t > O  ( 2  b) 

w = O  a t t = O .  ( 2  c)  

w = o  at y = 0, x < 0, (3 a) 

w = coswt at y = 0, x > 0. ( 3  b) 

The boundary conditions for the oscillatory motion are : 

The solutions w(t, x, y )  can be decomposed into two parts, w+ and w-, one symmetric 

(4) 

and the other anti-symmetric in that order about x = 0, i.e. 

w(t, x, v) = ;[w+(t, v) + w-(t, x, y)l. 

The symmetric part w+ is the classical solution of Stokes for either the impulsive or 
oscillatory motion of the infinite plate, which are independent of the coordinate x. In 
the next two subsections we present the fundamental solutions for w-, for the impulsive 
and oscillatory driving motions, respectively. 

2.1. Impulsive motion 
In this subsection, we seek a solution for w- which satisfies equation (l), initial 
condition ( 2  c) and boundary conditions 

w- = & 1 at 19 = O,n, ( 5 )  

where 0 is polar angle measured from the x-axis. 
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variable v’ 
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The boundary conditions (5) can be made homogeneous by introducing the new 

where 1 -(28/7c) is the steady state solution for w- in the upper half-plane which 
satisfies boundary conditions (5).  v‘ satisfies the initial-value problem : 

a v p t  = vv2vf (7 4 
v’ = 0 at 8 = O , K ,  for t > 0, (7 b) 

V’ = - (1 - (28/7c)) (7 4 at t = 0. 

The solution for v’ is not separable because of the 8 term in the initial condition (7c). 
However, one observes that a8/ax = - (l/r) sin 8, which suggests that although v’ is 
not separable in r and 8, av’/ax is. We thus introduce the functional substitution 

v = avyax.  (8) 

Taking the x derivative of (7a) and using (S), one obtains 

a q a t  = vv2v, 
while (7b) and (7c) become 

(9 4 

v = o  at 8 = O,n, for t > 0, 

2 .  
7cr 

v=--sin8 at t =  0. 

A separable similarity solution of (9u-c) can now be obtained by seeking a solution 
of the form u = - (2/7cr) sin 8f(rl), where (rl is a similarity variable q = r2/vt .  Substituting 
this form for v in (9u), one can show that the r- and &dependence cancel out of the 
equation and one is left with the reduced equation, 

which satisfies the boundary conditions, 

f (0)  = 0, Am) = 1. 

Aq) = 1 -exp(--q). 
The solution of (9u-c) is 

Thus, the solution of (9u-c) is 

v = --2sinO(l-exp( xr  -&)). 
Since w- is antisymmetric about x = 0, w-(t, 0,  y )  = 0. Integrating (8) using solution 

(12), applying (6)  and the foregoing symmetry condition on w-, one obtains 
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Stokes classic solution w+ for the flow driven by the impulsive motion of an infinite 
plate is 

w + =  1-erf ~ 

(2(&2) * 

Substituting these solutions for W+ and w- in (4) one has 

w = +-+erf(-------)+k IY I l m e x p (  IY I - s ) d x ’ ,  
2( Vt)’/2 

where the absolute value I I is used to assure that the solution is valid in the lower half- 
space where the flow is symmetric about the plane y = 0. 

If we introduce the dimensionless variables 6 = x/2(vt)’l2 and 7 = y/2(vt)’l2, where 
6 = 2(~t ) ’ /~  is the penetration depth, the solution (1 5 )  can be written in a dimensionless 
form 

which is independent of t. Equation (16) is a similarity solution that depends only on 
the scaled variables 6 and 7 since no characteristic length can be defined. 

2.2. Oscillatory motion 
For the oscillatory motion of the right-hand half-plate in figure 1 (a) we first introduce 
the dimensionless variables 7 = wt, 6‘ = X/(~V/W)’/~,  7‘ = ~/(2v/w)’/~, where (2v/w)’I2 
is the penetration depth for Stokes first problem. The dimensionless governing 
equation and boundary conditions can be written as 

aw 
at  
-- - 2v2w 

w = o  at 7‘ = 0, 6‘ < 0, (17b) 

w = COST at 7‘ = 0, 6’ > 0. (174 

Using the superposition (4), we seek a solution for w- of the form 

w- = Re{exp(i7)v’}, 
where v’ satisfies 

V2v’ = (1 + i)2v’ 

21’ = 1 at 7’ = 0, 6‘ > 0, (19b) 

u ’ = - 1  at 7’ = 0, 6’ < 0, (19c) 

where i2 = - 1 and V 2  = (i32/i3(’2) + 
The solution of (19a-c) is non-separable because of inhomogeneity of the boundary 

conditions. However, the functional substitution v = av’/a(’ significantly simplifies 
boundary conditions (19 b, c). The resulting governing equation and boundary 
condition are 

(20 a) 

v = 26((’) at 7’ = 0, (20 b) 

V2v = (1 + i)2u, 
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where a((') is the Dirac delta function. The solution of (20a, b) is 
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where Kl is a modified Bessel function of the second kind, R = ( ( ' z++ '2 )> ' /2  and 
tan0 = rj~'/('. 

Following the same procedure used in deriving (13), one obtains from (6), (8) and 
(21) 

Kl(( 1 + i) (x" + fz)l/z) dx'] . (22) 
2(1 +i) 

The solution (22) describes oscillating half-planes whose motions are 180" out of phase. 
Stokes solution w+ for the infinite oscillating plate is 

w+ = Re [exp (i7) exp (- (1 + i)lr'l)]. (23) 

Combining (4), (22) and (23) we find 

1,2 K,(( 1 + i) ( x ' ~  + ~ ' ~ ) l / ~ )  dx' 
1 + i  

+exp(-(l+i)lr'l)+- 

where I 1 is again used to assure that the solution has the proper symmetry about y = 0. 

3. Channel flows driven by a moving half-infinite plate 
We now consider the channel flows shown in figure l(b). The governing 

Navier-Stokes equation is equation (1). The boundary and initial conditions for the 
impulsive motion are 

u = O  a t y = h ,  Ixl<oo; y = O ,  x < O ;  t > 0 ,  (25 a) 

u = u o  a t y = O ,  x > O ;  t > 0 ,  (25 b> 

u = O  a t t = O ,  (25 4 
where h is the height of the channel. The boundary conditions for oscillatory motion 
are 

u = o  a t y = h ,  Ixl<oo; y = O ,  x<O, (26 a> 

u = u,coswt at y = 0, x > 0. (26 b) 

Note u(t,x,y) is here the velocity component in the z-direction and we have changed 
notation since the solution for u(t,x,y) will be written in terms of the fundamental 
solutions w( t, x, y )  for a single plane. 

In order to satisfy the no-slip boundary conditions on the top wall, y = h, we utilize 
the fundamental solutions derived in the previous section in an infinite series of mirror 
reflections about the plane y = h 
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Owing to the symmetry of the fundamental solutions ( 1 5 )  and (24) about the plane 
y = 0, w(t, x, 2nh) = w(t, x, - 2nh). Thus at y = 0 

for the impulsive motion and 
(x < 01, 

uocoswt (x > O ) ,  
u(t, x, 0) = 

for oscillatory motion. Substituting n = k -  1 into the first summation in (27), we 
obtain at y = h 

m m 

u( t ,x ,h)= uo[w( t , x ,h )+c  w( t , x , (2k - l )h ) - I :  w(t,x, -(2n-l)h)] = O .  
k=O n=1 

Therefore, the velocity (27) satisfies the governing equation (1) and boundary 
conditions on the top and bottom walls for both impulsive and oscillatory flow in the 
channel. 

If we introduce the dimensionless variables X = x / h ,  Y = y / h  and substitute ( 1 5 )  in 
(27), one obtains for the impulsive motion of the lower half-plane 

As 7+ co, the solution ( 1 5 )  for the flow in the unbounded half-space y > 0 
approaches the steady-state solution 

where the absolute value is again used to assure that the solution is valid in the lower 
half-space Y < 0. Substituting (31) into (27), we obtain 

+ arctan - 
7c Y . 12-1 Y-2n 1. ( Y+2n 
2 

u;/uo = -arctan-+- 2 arctan- 
X 

The solution for steady Couette flow in a channel with u = uo at Y = 0 is 

.:/u0 = 1 - Y. (33) 

Superposing equations (32) and (33), we obtain the asymptotic steady-state solution 

+ arctan - 
Y-2n 

u,/uo = f(uT + u;) = f( 1 - Y )  + - arctan - + - 2 arctan - 
1 X 

2Z y Z n = l  ( Y+2n 
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into (27) 
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For the oscillatory motion of the lower half-plane, one obtains after substituting (24) 

cosh( l+ l )H sinh(1 . +i)HY) 
sinh (1 + i) H 

u(7,X, Y)/uo = Re cosh(1 +i)HY- 

Kl(( 1 + i) H ( x ’ ~  + Yz)1/2)  dx’ x 

Y+2n 
1/2 Kl((l + i) H ( x ’ ~  + (Y+ 2n)2)1/2) 

l/zKl((l +i)H(~”+(Y-2n)~)~/’)  
Y-2n 

where H = h/(2v/w)l/’ is the scaled channel height. 
The shear stress acting on the top wall Y = 1 is given by 

(1 +i) H 
S, = p- = -Re{exp(i~)[U+iV]) = &Re h 2sinh(l + i )H  l Y s l  h 

1 
1/2 Kl(( 1 + i) H(X” + (2n - 1)’)ll2) 

2 ( l + i ) H r  2 + 
- (1 + i) H(2n - 1)’ 

x ’ ~  + (2n + 1)’ 

(( x ,, x”+(2n- 1) ) 

K2(( 1 + i) H(x” + (2n - l)z)l/z) dx’ . (36)  1 I1 
The maximum value of the stress during a temporal cycle is reached when 

7 = 7,,, = -tan-’( V / U ) ,  where U and V are defined in (36) .  At this value of 7,  the 
maximum dimensionless stress rm,, is given by 

The dimensionless maximum shear stress acting on the top wall Y = 1 is 

- 

smaxl = / I s inh ( l  +i)H+ x 0 12-1 x” + (2n - 1)2)1/2 
( l + i ) H  2(1+i )HP g [ Kl(( 1 + ( i) H(x” + (2n - 1)’)ll2) 

Kz((l + i) H(x” + (2n - 1)2)1/2) dx’]/. (38 )  
(1 + i) H(2n - l)z 

~ ’ ~ ( 2 n  - 1)2 
- 

The first term in (38 )  is half the dimensionless maximum shear stress Fmaxlco acting on 
the top wall Y = 1 for an infinite-plane oscillation. 

The maximum shear stress acting on the bottom wall Y = 0 is evaluated using the 
same procedure outlined for the derivation of (38) ,  

- 
s m a x 2  = /-2tanh(l + i )H  0 n-1 x” + 4n2)l/’ 

( l + i ) H  +2(1:i)Hr $ [ K,(( 1 + ( i) H ( x ’ ~  + 4nZ)l/’) 

K2(( 1 + i) H ( x ’ ~  + 4n2)ll2) 
- (1 + i) H4n2 

x ’ ~  + 4n2 
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where 

The first term in (40) is half the maximum shear stress acting on the bottom wall for 
an infinite-plane oscillating at Y = 0. 

To determine so in (40) we first note that 

[ 2(1+i) -~ 
“,. 

From (18) and the symmetry and asymptotic properties of w-, one can see 

v’(+co,Y)=-v’(-co, Y )  =exp(-(l+i)H]YI). 

Thus, (41) becomes 

exp(-(l+i)H]U) 
X 

“ 
1,2 Kl(( 1 + i) H(x’~ + Y2)l/’) dx’ 

- 

and so from (40) is given by 

4. Results and discussion 
The single integrals in the solutions for the velocity field for the single plane motions, 

equations (1 5 )  and (24), have been evaluated numerically. For the channel-flow 
problems, we require that the error in the truncated infinite series in (30), (34) and (35) 
be less than 

The velocity profiles at t; or t;’ = - 1, -0.1, -0.01, 0, 0.01,O. 1 ,  1 and co, for the flow 
in the upper half-space for the impulsive and oscillatory motion of a single split plate 
are plotted in figures 2(a)  and 2(b) ,  respectively. The profiles for the oscillatory motion 
are shown at wt = 0. The figures show that the point (0,O) is a singular point and the 
profiles at t; = 0 are a dividing line above which the profiles (t; > 0) asymptotically 
approach Stokes classical solutions for the infinite-plane motions and below which the 
profiles (t; < 0) decay with distance from t; = 0. The oscillatory profiles show the 
propagation of a vorticity wave which is nearly completely damped out for 5 < - 1. 
The decay in the amplitude of the boundary motion is thus much more rapid in the x- 
direction than in the y-direction where there is a significant disturbance at 7 = 1. This 
asymmetry illustrates the importance of two-dimensional effects in the region R < 1. 

Figures 3 (a) and 3 (b)  show the velocity profiles at different cross-sections, X = - 1, 
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FIGURE 2.  Velocity profiles, equations (16) and (24), at different sections, 5 = - 1, -0.1, -0.01, 0, 
0.01, 0.1, 1 and co, for flow in upper half space driven by the impulsive and oscillatory motion of a 
right half-plane when the left half-plane is stationary. The phase for the oscillatory motion is ot = 0. 

-0.1, -0.01, 0, 0.01, 0.1, 1 and co, for flow in a channel driven by a half-infinite 
impulsive moving plate at ut/h2 = 0.01 and 0.1, respectively. Figure 3(c) shows the 
asymptotic steady-state velocity profiles at the same cross-sections for steady flow in 
a channel whose lower right-hand half boundary is moving at constant velocity uo, 
whereas figures 4(a)-4(c) show the corresponding velocity profiles at the same cross- 
sections at w t  = 0 for the flow in a channel driven by a half-infinite oscillating plate as 
the scaled channel height H = h / ( 2 ~ / w ) l / ~  = h/6  is increased from 1 to 3 to 10, in that 
order. These profiles show the important difference in the influence of the upper 
boundary in the two problems. Both solutions asymptotically tend to the classic 
bounded whole-plane driven solutions as x + m. (0,O) is a singular point where the 
velocity is discontinuous. For the case of impulsive motion when 7 = ut /h2  = 0.01 
(figure 3 a) the influence of the singular point is confined to a local region that is a small 
fraction of the channel height and the solution exhibits a behaviour that is very similar 
to the unbounded solution in figure 2(a). As the vorticity fills the channel an 
asymptotic steady state is achieved. The profiles for T > 0.3 (not shown) are nearly the 
same as those shown in figure 3(c) for 7 = co, indicating that steady state is achieved 
for practical purposes in a time t = 0 .3h2 /v .  The effect of the singular point is confined 
to the region 14 < 1 for all t. 

The behaviour for the oscillatory flow in figure 4 is somewhat more complicated 
since a second characteristic length 6 = ( 2 ~ / w ) l / ~ ,  the penetration depth, appears. The 
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FIGURE 3. (a, b) Velocity profiles, equation (30), for flow in a channel driven by a half-infinite 
impulsive moving plate at cross-sections, X = - 1 ,  -0.1, -0.01, 0,  0.01, 0.1, 1 and co, for impulsive 
motion at v t /h2  = 0.01, and 0.1 respectively. (c) Asymptotic steady state velocity profiles, equation 
(34), at the same cross-sections for steady flow in a channel whose lower right-half boundary is 
moving at constant velocity uo. 

solutions exhibit different behaviour depending on the dimensionless height parameter 
H = h/6.  For H = 1 (figure 4a)  one observes quasi-steady oscillations that are nearly 
damped out for X = x / h  < - 1.0. The profiles for H < 1 are nearly indistinguishable 
from those in figure 4(a). For H = 3, a propagating vorticity wave appears (figure 4b) .  
For H = 10 (figure 4c) the flow has a boundary-layer like structure near the oscillating 
lower half-plate. The lateral influence of the singularity is confined to the region 
14 < 0.1 when H = 10. 
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FIGURE 4. Velocity profiles for the oscillating flow in a channel, equation (35), at cross-sections, 
X = - 1 ,  -0.1, -0.01,0,0.01,0.1, 1 andco,correspondingtophasewt=Oat(u)H= 1 , ( b ) H = 3  
and (c)  H = 10. 

Figures 5(a) and 5(b) show the equi-velocity contours for the flow in a channel 
driven by a half-impulsive moving plate at vt/h2 = 0.01 and 0.1, corresponding to the 
velocity profiles in figures 3 (a) and 3 (b), respectively. The equi-velocity contours for 
the oscillatory half-plane flow in a channel are omitted to save space but are similar to 
figures 5(a)  and 5(b)  if (vt)"l"/h is replaced by the parameter 6/h  = (2v /w) l / ' /h  = H - l .  

Figures 6(a)  and 6(b)  are plots of the maximum dimensionless shear stress 
distribution along the top and bottom walls during a temporal cycle for the half-plane 
oscillatory channel flow, equations (38) and (39). The figures reveal that there is little 
change in the maximum shear stress distribution at the upper and lower boundaries for 
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FIGURE 5. Equi-velocity contours for flow in a channel driven by a half-infinite impulsive moving 
plate, equation (30), at v t /h2  = 0.01 and 1, respectively, with the real values times the labelled 
ones. 

H d 0.5. For these values of H the velocity profiles change in a quasi-steady manner 
(see figure 4 a )  since the frequency is low enough for the vorticity to diffuse to both 
boundaries. For H > 5, the propagating vorticity wave has been nearly damped out at 
the upper boundary and S,,, < 0.1. For X % 1, S,,,, approaches the asymptotic 
limiting value 4 2  H/lsinh(l+$ f l  given by twice the first term in (38). In contrast to 
these results at the upper wall, the maximum shear stress distribution at the lower 
boundary decreases monotonically for X < 0 as H increases, whereas it increases for 
X > 0 as H increases. One notes that for H 2 3 there is a minimum which is slightly 
less than the asymptotical value 4 2  H/ltanh(l +i)f l  for X 9 1. The shear stress is 
singular at X = 0 and the region of influence of the singularity is confined to a distance 
of order 14 = H-'. 

The infinite shear stress at the origin leads to an infinite force on the oscillating 
plates. This is a physically unrealizable behaviour since there must always be some 
small, but finite, gap of half-width 4 between the plates. We have examined this 
limiting behaviour by looking at two zero thickness half-plates in which the fluid above 
and below the half plates is connected by a narrow infinite slit of width 24. The flow 
is then divided into two regions, an outer region which is described by the asymptotic 
solution in this paper and an inner region which is defined by the dimensionless length 
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FIGURE 6. The dimensionless maximum shear stresses smaZ1 and S,,,~, equations (38) and (39), acting 
on the top and bottom walls for oscillating flow in a channel for representative dimensionless heights 
H = 0.1, 0.5, 1, 3 and 5. Dashed lines asymptotic limiting maximum shear stress for infinite lower 
plate oscillation. 

parameter d 2 / ( 2 v / w )  < 1. In this inner region one can show from asymptotic analysis 
that the governing equation (19a) reduces to Laplace’s equation, the flow to leading 
order is quasi-steady and the boundary conditions are given by (19 6 )  and (19 c)  for 
x’ = x/d > 1 or < - 1 in that order. The solution to this inner boundary-value problem 
can be obtained by conformal mapping (Joukowski transformation). The velocity and 
shear stress for this solution are bounded in the inner region. We give only the final 
result for the shear stress at the top or bottom of the half-plates (the details of this 
solution can be obtained by writing to the authors) 

(x’ > l,x’ < - 1). 1 s=- [  2p 1 +x’(x’2- 1) 
nd (x’ + (x’2 - 1)1’2( (43) 

In the limit x’ + k 1 ,  (43) reduces to s = k 2p/(nd).  If one now examines the behaviour 
of the outer solution for the shear stress derived from (35) in the limit as x + 0, one 
finds that s is now given by this same limiting form for (43) as x’+ f 1, but with A 
replaced by x and the signs reversed. Thus, in the limit d + 0 the singularity can be 
removed by adding the inner and outer solutions and a finite integral obtained for the 
force on the walls. 
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The stability of time periodic Stokes layers is reviewed in Davis (1976). The criteria 
for the stability of these layers depend on two parameters, the quantity H describing 
the ratio of the channel height h to the viscous penetration depth S and the Reynolds 
number R" = US/v  defined by the amplitude of the plate velocity and the penetration 
depth. One might anticipate that Stokes layers might be unstable because the velocity 
profile is highly inflexional. Both energy analysis using Floquet theory for finite- 
amplitude disturbances and linear stability theory for infinitesimal disturbances have 
shown that Stokes layers are surprisingly stable except for the case where the wall 
streamlines are curved and periodic axial vortices of the Taylor-Gortler type are 
possible, Hall (1984). Although the w velocity component is two-dimensional in the 
present solution, the streamlines are straight and thus one would intuitively expect the 
stability to be determined by similar criteria to those studied for traditional Stokes 
layers with straight streamlines. 

In the traditional analysis of Stokes layers with straight streamlines, one finds from 
linear analysis (evolution of disturbances over a cycle) that the basic flow is stable for 
R" < 800 for H = 8 and this critical Reynolds number increases as H increases (von 
Kerczek & Davis 1974). The more unstable part of the flow is associated with the 
inflexional points in the nearly motionless fluid outside of the Stokes layer where the 
effects of the boundaries do not damp the infinitesimal disturbances. By this same 
reasoning, the boundary dominated quasi-steady inner region should be stable and the 
more 'dangerous ' part of the flow should be the inviscid instability associated with the 
inflexion points in the velocity profiles in the outer region. The unusual stability of 
these instantaneous inflexion points can be explained by the fact that they propagate 
away from the boundary too quickly to allow the growth of local instabilities. 

In our final remarks we return to the design of the novel flow chamber that 
motivated this study. Bone cells are typically subject to mechanically induced shear 
flows at either 1 Hz due to locomotion or 15-25 Hz due to muscular contractions 
required to maintain posture. In our flow chamber a cell culture monolayer is grown 
to confluence on the upper boundary of the channel and the channel height h and 
characteristic velocity uo are chosen to simulate a physiological shear stress which is of 
the order of 10 dynes cm-2. For water ( p  = lop2 dynes cm-2 s-l) and a typical channel 
height of 200 pm this is achieved for uo = 20 cm s-l. For these values one finds that 
H = 0.7 for w = 20 Hz and H = 0.15 for w = 1 Hz. The maximum shear stress 
distribution on the upper boundary is therefore given by the curves for H < 1 in figure 
6(a). As already discussed for these profiles the shear rises from zero to a maximum, 
s,,,~ z 1.0, over a region, 14 < 1 .  For these values of H,  inertia effects are very small 
even at w = 20 Hz. This shear stress distribution closely mimics the physiologically 
predicted loading of osteons and trabecular elements in the recently developed 
poroelastic lacunar-canalicular model of Weinbaum et al. (1994). The proposed flow 
chamber is thus able to replicate both the characteristic lengthscale and the frequency 
variation of the fluid shear stress distribution on the membranes of the osteocytic 
processes in the canaliculi. 

- 

5. Conclusion 
In summary we have obtained new exact solutions of the Navier-Stokes equation for 

flows driven by the impulsive and oscillatory motion of bounded or unbounded 
touching half-planes. The solutions for a single split-plane motion in a half-space show 
the transition to the classical infinite-plane solutions of Stokes as Xincreases. The flow 
driven by the impulsive motion of a bounded half-plane reaches its steady state in a 
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time of order v t /h2  - 0.3. The two-dimensionality of the oscillatory solution is 
confined to a region of order 6 = ( ~ Y / W ) ’ / ~  about the point of contact between the 
moving and stationary half-planes. The maximum shear stress acting on the bottom 
wall during a cycle is singular as one approaches the contact point while that on the 
top wall decreases exponentially as H = h/S increases. 
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